skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bakaul, Saidur"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this work, TiO2thin films deposited by the atomic layer deposition (ALD) method were treated with a special N2O plasma surface treatment and used as the gate dielectric for AlGaN/GaN metal insulator semiconductor high electron mobility transistors (MISHEMTs). The N2O plasma surface treatment effectively reduces defects in the oxide during low-temperature ALD growth. In addition, it allows oxygen atoms to diffuse into the device cap layer to increase the barrier height and thus reduce the gate leakage current. These TiO2films exhibit a dielectric constant of 54.8 and a two-terminal current of 1.96 × 10−10A mm−1in 2μm distance. When applied as the gate dielectric, the AlGaN/GaN MISHEMT with a 2μm-gate-length shows a high on/off ratio of 2.59 × 108and a low subthreshold slope (SS) of 84 mV dec−1among all GaN MISHEMTs using TiO2as the gate dielectric. This work provides a feasible way to significantly improve the TiO2film electrical property for gate dielectrics, and it suggests that the developed TiO2dielectric is a promising high-κgate oxide and a potential passivation layer for GaN-based MISHEMTs, which can be further extended to other transistors. 
    more » « less
    Free, publicly-accessible full text available December 5, 2025